
7/13/2007

SOFTWARE DEVELOPMENT SERVICES

WEB APPLICATION PORTAL 

(WAP) TRAINING

Intuit 2007

I’ve included this training in my portfolio because it was very technical and I 

worked with a SME to develop it. It demonstrates my ability to take a 

complex subject and work with others to turn it into usable material. 

Starting around slide 27 you will start to see diagrams of the application to 

further demonstrate how complicated the material is. Because I come from a 

developer background, even though I may not know the technology, I am able 

to document it anyway. 



7/13/2007

INTRODUCTION

▪ What is their experience at Intuit with portal work?

▪ What team are they on and what are they building?

▪ What would they like to get out of this training?

▪ What are their interests or hobbies?

Introduce Your Teammate:



7/13/2007

COURSE STRUCTURE

Module 1 - Overview of Web Architecture Applications

Module 2 – WAP Methodology

Module 3 – Programming with WAP



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Introducing WAP

 Understanding WAP as a web based/component based application

 Defining the portal/portlet components and the WAP architecture

 Identifying WAP system requirements 

Learning Objectives:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 A component model and framework for building customer-facing web applications 

at Intuit

 A server image with required runtime software

 Enabling libraries for application creation

 Shared features for re-use in offerings

 Web design tool offerings that automate and improve the speed of the 

development process 

What is WAP?



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Web products and services that wow and delight our customers

 Web development tools and offerings that are tailored to customers needs

 Long term revenue and growth from these offerings

 Lots of web offerings that address specific market segments

The goals of WAP are to provide:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Web apps are costly to build, host, and maintain lots of offerings all built from the 

ground up on miscellaneous technology and architecture

 As offerings get more sophisticated they become brittle and difficult to change

 Sharing components across offerings is difficult because they are all unique

 Changes start to create more and more bugs as offerings become mature

 Changes take longer and longer because the internal coupling of offerings continue 
to get more complicated

 Because each offering is unique it takes a long time to add resources that can work 
with offerings

 Old models of web development don’t address these challenges, so doing more of 
the same doesn’t address the problem but continues to feed it

Our Web Challenges:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 BHP – Basic Hosting Platform for hosted services

 SPC-F – Software Programing Client Foundations support for language 

portable engines

 MAP – Microsoft Application Platform for Windows desktop applications

 WAP – Web Application Platform for customer facing web applications (built 

on BHP, where BHP is the container, and WAP is the stuff inside)

SPC and WAP Terminology:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Use standards based portable solutions to let us leverage commercial 

products and open source

 Are innovative by componentizing our offerings using the Portal/Portlet 

model to allow rapid composition of features

 Encapsulate functions into components so the scope of changes and testing 

can be contained

 Deliver shared features based on this component model to raise the entry 

level of all offerings

WAP Solutions:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 WAP 1.0 was released in December ‘06

 WAP 1.1 is currently under development targeting a spring ’07 release

 Early iterations of WAP 1.0 are being used in production by Zipingo

 Stable iteration builds can be used for betas with customers

 Projects such as CTG’s Online Tax Engine, IMS Merchant Portal, and SB 

Connect are actively developing on WAP now for release in the near future

 A new hosting service in IIT called One-Stop-Shop-For-Hosting is being 

built around hosting WAP offerings and providing pre-production and 

production shared hosting in a virtualized environment 

The State of WAP:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 WAP helps make global changes to the navigation and look and feel 
without touching application code

 Can rapidly create offering variants without code changes

 Can build up a library of company level (WAP) or product line (SB 
Connect) re-useable features and start new offerings with more and 
more capability that is already built and tested

 Can work in parallel without conflicts on components and combine them 
at deployment time

 Can work easily in multiple sites and combine efforts in the finished 
offering

Project Development Gains:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Can iterate on any component, a portlet, a theme, the navigation, the 

layout without having a dependency on the other parts

 Can offer global user features like customizable properties, layout, in an 

efficient and decoupled manner 

 WAP helps make global changes to navigation and look and feel without 

touching application code

 Can rapidly create offering variants without code changes

 Can work in parallel without conflicts on components and combine them 

at deployment time

Project Development Gains:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Can work easily in multiple sites and combine efforts in the finished 
offering

 Can iterate on any component, a portlet, a theme, the navigation, the 
layout without having a dependency on the other parts

 Can offer global user features like customizable properties, layout, in 
an efficient and decoupled manner 

Project Development Gains:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Are designed as a web-based applications

 Supply applets that are embedded in Java based HTML code 

 Create applications (or functions) that are embedded and customized 
to provide access to functions. 

WAP Components:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

No new protocols are introduced, portlets and portals just talk standard 
http. When you use the JSF bridge, the portlet only sees the standard JSF 
lifecycle and behaves like a JSF application. 

The Portal: 

 Acts as a common dispatcher for all requests

 Applies a pipeline to each request to process it and generate the right 
result

 Invokes portlets through the Portlet interface to obtain rendered 
markup and to invoke actions

WAP Components are http- and Java-Based:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 HTTP request processing

 Simple request response; delivers headers then content

 URL references a resource

 CGI – Common Gateway Interface maps a process to URL parameters 

and streams are passed to process; process emits response; headers then 

content

 JBoss Tomcat – web container handles dispatching requests to processes 

(threads) and then hands off the correct handler

WAP is a Java-based application that uses:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Servlets – request processing application, i.e. CGI app in Java

 .JSP – a markup language mixing markup and java code compiles into 

Servlet

 Portal – JBoss Portal, servlet-based application that generates a site 

based on metadata, a style theme, and a set of page layout templates

 Portlet – like a servlet or .jsp. It only renders a fragment for 

composition in a portal, defined by the Portlet spec JSR-168 

WAP is a Java-Based application that uses:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Use the new WAP Template in your project

 It contains a lot of the common tasks like creating offerings and portlets into an 

ANT-based template so that the project offerings in the project are automated

 WAP packages a standard build script

 WAP generates the starting configuration for a skeleton project

Then you:

 Generate your offering project and check it in

 Build it and deploy it

 Customize it by adding pages, portlets, themes, layouts etc…

How to Use WAP:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 If they are in the same portal application they can share state data in the 

PortletSession ‘application’ scope on the server

 Portlets can read parameters directly from the URL, which is good for creating 

screens that can be bookmarked

 Portlets can set and read session attributes in the HTTP session of the 

application server

 On the client, WAP has logical-named JavaScript events so that portlets can raise 

and handle events without prior knowledge of each other, allowing for dynamic 

interaction without communicating back to the server 

Can Portlets Talk to Each Other Using WAP?



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

Think of the portal as the windowing system for the web:

 The portal framework solves a lot of global problems that we don’t want 
to embed in code

 Access control, personalization, skinning the site, site wide navigation, per 
user/per component settings, multiple device rendering, deployment at the 
feature level, creation of offerings by combining components at 
deployment time, customizable layout…and more…

 If we built all of the things above, we’d end up building the portal 
framework, instead, with WAP, we just use it

 We can leverage open source and commercial portlets, portals, and tools 
to reduce the amount of new coding and testing we have to do 

What is a Portal?



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Mini-web applications that adheres to the JSR-168 Portlet specification

 They render a fragment of markup and handle actions addressed to it

 They are a full web application with business logic, persistence, and separate deployment in 

a .WAR file

 They can be built using common web technologies like JSF so that engineers need to know 

little about “portlet-ness”

 They contain a whole offering feature, including things like screen flows

 They derive styles and graphics from a portal wide theme to allow skinning for use in 

different offerings

 Each portlet class can be used in multiple logical portlet instances that each can have 

different initialization parameters enhancing reuse and requiring only one deployment for 

multiple uses 

Portlets are:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 A single UI control with no business logic meant to be embedded on a form: that’s 

a JSF control

 The whole site including pages and navigation, this would degenerate a portlet into 

being the whole app, defeating most of the benefit of componentization

 A particular rendering on the client; portlets can render any markup and can in 

fact, support multiple renderings, html, mobile xhtml, wml, flex, openlaszlo etc…

 A servlet, even though it’s packaged as a web application, it isn’t a servlet; it is 

always invoked by the portal framework 

What a Portlet Is Not:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 WAP provides a portlet class that reads the portal metadata and provides an 

interface to it

 The navigation portlet delegates to a .jsp for rendering so you can create whatever 

kind of navigation rendering you need

 We provide tag libraries for rendering tabs, menus, and outline (or tree) style 

navigation

 We provide pre-made views for the navigation portlet that render these kinds of 

navigation

 You can use them directly and customize the look by overriding the CSS styles

Navigation Portlet:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Our navigation tags generate UI components that have a JavaScript event model so 

you can manipulate them either by sending named events to them, or by listening 

for their events and providing your own handlers

 The reason you need this is that the navigation in your application is dynamic, 

based on personalization or security, items may be added or removed for a given 

user. The model provided by the navigation portlet has been filtered for this

 There is some additional configuration for navigation portlets to allow them to 

access the portal metadata, we provide examples

 Other than that, they are normal portlets 

Navigation Portlet:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 The theme is the look of your offering—it should be a style guide that identifies 

colors, fonts, graphics, and backgrounds

 The layout is the set of different page compositions that you use so most sites 

have a few different component layouts

 The two together are called the skin of an offering

 Along with the portal metadata, these items might just be the whole offering!

 In a JBoss portal, the style sheet for the offering is called a theme—layouts are 

.jsp’s that are used to layout portlets in a page

 Themes and layouts are packaged in a .war file

Themes and Layouts:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 The portal metadata selects a default theme and layout for the portal—each page can 

override the theme and layout

 Keep the skin and the global layout of pages separate from the application code

 A WAP Project Template generates a default theme that you can customize

 Named regions define the place where portlets will be substituted into a layout—

multiple portlets can be arranged in a region

 There are also rendering classes for regions, the frames around portlets, and the div 

that portlet renders into that can be overridden for advanced effects 

Themes and Layouts:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

WAP Architecture:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Portlet.xml – define portlet instances and give them names

 *-object.xml – portal metadata… define portal pages, what portlets they contain, 

what layout and theme, what regions of the layout should a portlet be assigned

 Jboss-portal-themes.xml – define available themes

 Jboss-portal-layouts.xml – define available layouts and the regions they support

 Web.xml for your portlet .war – sometimes there are standard web.xml 

configurations required, but mostly use the boilerplate the WAP Template Project 

provides

 Build.xml in one of you sub directories to add ANT build dependencies (we plan 

to automate this in future release)

Themes and Layouts:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 *-spring-config.xml – configure services provided as spring components (used 

infrequently)

 *.hbm – hibernate mapping file will map your persistent objects and collections 

onto your schema and enable hibernate to manage their persistence

 These are in the order of most frequent changes and in general they are quite 

stable 

Themes and Layouts:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

Runtime Overview:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

Conical Web Site Application:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Asynchronous JavaScript and XML is the latest name for using the 

XMLHttpRequest object in the browser to communicate in the background 

with the server via HTTP

 WAP packages and provides tag support for AJAX, applying the same event 

model as our interportlet events

 You can invoke any POJO or Spring object on the server using a JavaScript 

proxy

 WAP provides batching of requests into priorities so that many small requests 

can be sent to the server as one big request

 AJAX-enabled JSF controls are supported in WAP to provide partial rendering 

to speed up client UI’s especially with large data sets 

WAP and AJAX:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

WAP Ajax Integration:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Asynchronous JavaScript and XML

 UI component based model-view-controller web framework

 UI’s are built out of controls referenced with tags in a .jsp view

 Controls are bound to backing objects backing beans execute actions and 

persist states

 Uses JSF navigation rules 

 JSF restores the state of the controls in a view until a new view is made 

current by a navigation event

 Both standard JSF controls, open source (tomahawk, myfaces), and 

commercial Infragistics and as needed WAP controls

JavaServer Faces (JSF):



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Working with Infragistics to create AJAX-enabled advanced UI controls

 Tools support JSF either by WYSIWYG composition or non visual tag 

assist

 JSF fits well with the portal rendering model and executes seamlessly in a 

JSF bridge portlet 

JavaServer Faces (JSF):



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 Hibernate is an ORM engine-object relational mapping engine

 It stores and retrieves and queries graphs of objects using a relational 

database

 It provides caching, lazy loading, database independence, and reduces the 

amount of SQL you have to write

 Objects managed by Hibernate are just POJOs (plain old java objects) and 

are easy to use and to make an existing object persistent

Hibernate:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 There are many ways to use Hibernate, one popular way is to annotate 

objects and generate the hibernate configuration, this makes most of 

hibernates function transparent

 Other options are to generate the hibernate mapping and data objects 

from an existing schema, or to generate the data objects and the schema 

from the hibernate mapping file 

Hibernate:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 We support login and single sign-on with Intuit’s AUTH system

 Implemented using container managed security in JBoss via the JAAS standard

 Declare security assertions in web.xml for web applications based on users and 

roles

 Declare page, portlet security assertions in *-object.xml based on users and roles

 Declare portlet logical security role mappings in portlet.xml, create portlets that 

can run in multiple applications by mapping application roles to portlet roles

Security:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

 In code use JAAS to check the UserPrincipal to see if has component 

roles

 For access to Intuit-specific user information, use the WAPPrincipal 

interface on the standard UserPrincipal to query and update these 

properties

 WAP’s security is outside application code as much as possible so that 

it stays correct, can be easily reviewed and changed, and so that policy 

changes can be less risky and involve little or no code changes

 WAP contains a shared feature Portlet for login, account creation, 

account maintenance, password recovery, and userid recovery 

Security:



7/13/2007

MODULE 1 – INTRODUCTION TO WAP

Linux or Solaris 36 Gig Internal Storage

Java 1.5x NFS Storage (optional)

JBoss Portal 2.2 (and requisite app 

server)

Oracle 9i on Solaris shared or 

dedicated (optional - any Hibernate 

supported database)

Apache Web Server JSR-168 Portlet API

Dual CPU App and Web Servers JSF user interface framework

8Gig memory on App Servers, 4Gig 

on Web Servers

Spring ICC (optional)

Security:



7/13/2007

MODULE 2 – WAP METHODOLOGY

 Define component based offerings

 Analyze and review a design concept

 Decompose a design concept (project)

 Defining a WAP Portal (parts and pieces)

Learning Objectives:



7/13/2007

MODULE 2 – WAP METHODOLOGY

When developing a WAP project:

 Design a site concept

 Decompose into portlets and pages and define navigation and 
personalization

 Use shared portlets wherever possible and customize look and feel with 
.css or custom .jsp view

 Mock up site structure for pages, substitute content for portlets not done 
(usability test)

WAP Development Process:



7/13/2007

MODULE 2 – WAP METHODOLOGY

In parallel:

 Create custom theme

 Create portlets using JSF GUI design tools

 Create static site content in content management system publish 
using content portlets

 Replace mock portlets and usability test (iterate) 

WAP Development Process:



7/13/2007

MODULE 2 – WAP METHODOLOGY

Development Workflow 

Example:



7/13/2007

MODULE 2 – WAP METHODOLOGY

Production Build:



7/13/2007

MODULE 2 – WAP METHODOLOGY

WAP Portal Baseline:



7/13/2007

MODULE 2 – WAP METHODOLOGY

Production Deployment:



7/13/2007

MODULE 2 – WAP METHODOLOGY

 Baseline only needs to be done initially and at upgrades

 Content is pushed into production CMS from staging CMS or via bulk load from 

.zip

 Prior configuration is backed up for rapid rollback

 Incremental deployment encouraged:

 ApplicationTheme – change look and feel or nav method

 ApplicationPortlet – patch, upgrade product function

 Application-Objects.xml – extend site structure

 ApplicationContent – update content directly without engineering involvement

 Sample ANT script to push to deployment server from build output 

About Deployment:



7/13/2007

MODULE 2 – WAP METHODOLOGY

 Portals that help monitor applications

 Usage monitoring

 Collaboration

 Log in and authentication services

 Profiling

 Administration

 Navigation

 Managing content

 Credit card authorizations, PCI, etc.

WAP Offerings:



7/13/2007

MODULE 2 – WAP METHODOLOGY

 Portal Helpers

 Page Level Logical Events and Inter-Portlet Logical Events

 AJAX tags and Server objects

 Browser Capabilities

 Personalization expressions

 Account Interface and WAP Principal

 Profile Interface

 Navigation Tags and Portlets

 Login and Account Maintenance Portlet and Universal Login

WAP Capabilities:



7/13/2007

MODULE 2 – WAP METHODOLOGY

 AJAX Login Tags

 The IFrame portlet and service

 The Feedback tag, password feedback, custom feedback

 Namespace tag for making portlet scoped JavaScript instances

 Weblets

 Audit Logging 

WAP Capabilities:



7/13/2007

http://wapdevws.bosptc.intuit.com/portal/

Example 

WAP 

Site:

MODULE 2 – WAP METHODOLOGY



7/13/2007

MODULE 2 – WAP METHODOLOGY

Data Search 

Example:



7/13/2007

MODULE 2 – WAP METHODOLOGY

Data Entry 

Form 

Example:



7/13/2007

MODULE 3 – PROGRAMMING WITH WAP

 Create a WAP project framework

 Create a WAP portlet (XML meta data)

 Create a WAP template (Layout, look and feel)

 Create a new offering

 Deploy the offering

 Add WAP Portlets

 Change the default page name

 Update the default page

 Update and deploy the theme

 Create and deploy a new JSP Portlet

 Update dependencies

Learning Objectives for Hands-On Session:


